Zhang: IS 441 SQL Handout 2 – JOIN and more

IS 441 SQL Handout 2 – Joining Tables; ALTER/INSERT/UPDATE
[bookmark: _GoBack]Dr. Yue “Jeff” Zhang, Version 3.2, April 13, 2016
=========================
****PLEASE study all four materials:****
1. This handout; 2. The password-protected handout “SQL_Handout_pswd”; 3. PPT; 4. Textbook.
=========================

I. JOINING TABLES
1. Syntax of JOINs

SQL implements the joining of tables in the JOIN clause. A JOIN operation can be conducted in the following syntaxes:
(a) SELECT field-list FROM Table1, Table2, Table3, …
WHERE Table1.PK=Table2.FK
AND Table2.PK=Table3.FK
(b) SELECT field-list FROM (Table1 JOIN Table2 ON Table1.PK=Table2.FK)
JOIN Table3 ON Table2.PK=Table3.FK
Joining two tables are straightforward, BUT joining THREE tables needs more attention: one needs to clearly understand the three tables’ relationship – more so than joining two tables. Examples:
[image:]
[image:]
[image:]What can we say about the two tables on the right? – based on the fields and the referential integrity?

2. Outer Join Logic and Outcomes
[OUTER JOIN also has the same options in syntax as (INNER) JOIN: use WHERE or ON]

Assuming that there are two tables CUSTOMER and ORDER with entity instances and relationship instances as follows:

	Cust_ID
	Cust_City
	…
	(Lines here means the relationship)
	Ord_ID
	Ord_Date
	…
	Cust_ID

	C01
	…
	
	
	O1011
	…
	
	C01

	C03
	…
	
	
	O1012
	…
	
	C08

	C08
	
	
	
	O1013
	
	
	C32

	…
	
	
	
	…
	
	
	

	C32
	
	
	
	O1234
	
	
	C01

	C36
	
	
	
	O1235
	
	
	C78

	…
	
	
	
	…
	
	
	

	C78
	
	
	
	O9876
	
	
	C78

	…
	
	
	
	…
	
	
	

The SQL code -
SELECT CUSTOMER.Cust_ID, Ord_ID
FROM CUSTOMER LEFT OUTER JOIN [ORDER]
WHERE CUSTOMER.Cust_ID = [ORDER].Cust_ID;

Will generate the following results:
C01	O1011Results:
All orders related to their customers,
AND
ALL customers, even those w/o order.

C01	O1234
C03
C08	O1012
C32	O1013
C36
C78	O1235
C78	O9876

3. Outer Join Syntax, with Variations

Syntax:
SELECT field_list
FROM TABLE1 LEFT OUTER JOIN TABLE2
WHERE TABLE1.common_column = TABLE2.common_column

produces ALL records in TABLE1, plus those related records in TABLE2.

***NOTE:
The above logic can be executed and produce exactly the same outcome with a variation:

	Table on LEFT
	
	Table on RIGHT

	FROM
	TABLE1
	LEFT OUTER JOIN
	TABLE2
	“Whole table” LEFT join the other table

	FROM
	TABLE2
	RIGHT OUTER JOIN
	TABLE1
	The other table RIGHT join “whole table”

Please note: the effect of switching the table names AND (simultaneously) change “LEFT” to “RIGHT” will generate the same outcome.
The “Whole table” is the table –
· To the left of LEFT JOIN, or
· To the right of RIGHT JOIN.
The outcome of
	A LEFT JOIN B
	CUSTOMER LEFT JOIN ORDER
	 EMPLOYEE LLEFT JOIN MANAGER

	**** ---- is the same as ---- ****

	B RIGHT JOIN A
	ORDER RIGHT JOIN CUSTOMER
	MANAGER RIGHT JOIN EMPLOYEE

4. “Bridge table”: Tables needed to be joined even no field from the table is to be listed
Scenario: Table4
Table3
Table2
Table1

SELECT Table1.fied, Table2.field, Table4.field -- Note Table 3 has no field to be listed!!
FROM Table1, Table2, Table3, Table4 -- Note Table 3 still needs to be joined!!
WHERE Table1.common_column_w_2 = Table2.common_column_w_1
AND Table2.common_column_w_3 = Table3.common_column_w_2
AND Table3.common_column_w_4 = Table4.common_column_w_3;

Note: Even in the SELECT clause we only listed fields from tables 1, 2, and 4, we need to include the join conditions involving Table 3 in order to be able to connect Table 4.

5. CAUTION: While “nested” or multiple (INNER) JOINs are doable just as the JOIN between two tables, multi-table OUTER JOIN is more difficult to handle: unexpected outcomes would result if a multi-table outer join is attempted without very careful analysis. The advice is: do NOT attempt to perform a multi-table (more than two) outer join in one SELECT statement.

II. ALTER, INSERT, and UPDATE

Slide 30 of Chap 6 PPT:
· ALTER: changing the columns of the table
· ALTER TABLE CUSTOMER_T ADD field…
· Note: About ALTER – a table contains two rows or 200 rows are the same in logic, since those 198 extra rows are just more (much more) logical repetitions (with some different values) of the original 2 rows. HOWEVER, a column having 10 columns and a table with 12 columns – 2 columns added to the original table – are very different: the STRUCTURE has changed. Hence the term for the operation of adding columns: ALTER.

· INSERT: adding records based on the existing table
· For a complete-row insertion: INSERT INTO CUSTOME_T VALUES (values of fields, in the order corresponding to the order of the fields in the table)
· For a partial-row insertion: INSERT INTO CUSTOME_T field-list VALUES (values of fields, in the order corresponding to the order of the fields in the field-list)

· UPDATE: changing the values of some fields in selected records
· UPDATE CUSTOMER_T SET field = value …WHERE…(the condition to have the update applied to rows)

III. Re-Emphasizing on Normalization:

Please study Normalization example with step-by-step solution

© 2014-2016 Yüe “Jeff” Zhang, CSU-Northridge 1
image1.png
CUSTOMER t

¥ Customer.D
Customer_Name.
Customer_Address.
Customer_City
Customer_State
Postal_Code.

O

ORDER_t

Order_linet

7 orderd
Order_Date
Customer 1D

7 orderD
@ product 1D
Ordered_Quantity

image2.png
Order line t PRODUCT t
ORDER_t ¥ order D L [% Produc D
 oraern 9 product =Tt pescption
Order_Date Ordered_Quantity Product_Finish
Customer 1D Standard_price

Product_Line_ID.

image3.png
EMPLOVEE t EMPLOVEE £ 1
[7 employee D [7 Employee D
Employee_Name. Employee Name
Employee_ Address Employee Addres:
Employee_Skills_t Employee_City Employee_City
T tmployee.id Employee State Employee_state
9 skt Employee Zipcode Employee_Zipcods
Employee_Supenisol Employee_Supen
Date_tired Date_tired

